Autotuning for Exascale Data Management
Kesheng Wu*, Ke-Jou Hsu, and Surendra Byna
Lawrence Berkeley National Laboratory

This position paper makes a case for autotuning in exascale data management systems. The
strategy of autotuning has been demonstrated to be very effective for a wide variety of systems
including math libraries [1][2] [3], compilers [4], and commercial database systems [5][6]. We
propose to utilize the same strategy in a new data management system that can dynamically adapt
to the evolving storage hardware and shifting workload.

Introduction

High Performance Computers (HPC) typically store data onto some large parallel file systems
attached through high-speed networks. The file system was initially designed many decades ago for
systems with a single CPU and a single disk. This design is expected to be a bottleneck in many
exascale applications [7][8], especially those Big Data applications [9][10][11][12]. These
challenges arise from complex storage hardware as well as varying access patterns. The storage
systems often consist of thousands of hard drives and hundreds of dedicated storage managers
connected through specialized computer network. It is necessary to have detailed knowledge about
many pieces of these components in order to achieve a good performance. As in many other such
cases, the relationship between performance and the configuration parameters is highly irregular
and the most effective way to locate the optimal parameter choices is to actually measure the
performance on a specific system. This approach of systematically measuring the performance
under various configuration parameters to determine the best choices is known as autotuning. We
believe this strategy to be appropriate for addressing the hardware complexity.

A file is basically a sequence of bytes. After a file is written in a particular way, it is only effective for
certain read access patterns. Let X, Y and Z denote the three dimensions of a 3D array. If it is written
with Z as the fastest varying dimension, then reading a section of the array with fixed X and Y would
be reading a consecutive block of the data file, which is efficient, however reading a section of the
array with fixed Y and Z would be accessing elements that are spread apart from each other, which
is time consuming. The database management systems (DBMS) have to deal with similar variations
in the data access patterns. The database community has developed an extensive set of self-
managing techniques [5][6][15]. These techniques are alternative forms of autotuning.

Autotuning in Scientific Computing

In scientific computing, the term autotuning was initially used to describe the strategy of applying a
systematic testing of the myriad options to determine the best choices on a specific computer. This
was demonstrated to be effective for common mathematical operations such as matrix-matrix
multiplications [13][14]. In these case, the algorithms are adjust to have different blocking factors
in order to take full advantages of hardware details, such as cache sizes, levels, cache line sizes,
bandwidth of the caches, and number of registers of various types. These configuration parameters
affect the performance in very complex ways, there is no easy way to determine the algorithmic
choices to achieve the optimal performance. An effective strategy was to actually measure the
performance every combination of algorithmic choices and record the best options for different
problem sizes. This strategy is generally known as autotuning, and has been successfully used in a
large variety of applications [1][2][3][4]. The general strategy of letting users specify the “what”
and have systems figure out the “how” has been applied to a wide variety of problems. DBMS is
well-known example.
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Self-Managing DBMS

DBMS generally requires the users to describe their data as relational tables and specify their
analysis tasks in the Structure Query Language (SQL). The relational data model is a logical model
of data and SQL essentially specifies what to do instead of how to complete a task. The DBMS
software is free to decide the physical organization of user data and processes SQL statements in
the most efficient manner it can find. Over the years, researchers have developed many data
structures and data processing algorithms to accelerate the DBMS operations, while users continue
to execute their old SQL programs.

We notice two important approaches from the successes of DBMS systems: a high-level data model
and autotuning. The relational data model has served database systems well, however, many other
choices are also used in other application areas. For example, many Internet companies use NoSQL
systems that organize their data as key-value pairs. In scientific applications, many have chosen
high-level data formats implementing variations of the array model. A good way for our new data
management system to gain acceptance is to follow one of these data formats and adopt the array
data model.

In database literature, the autotuning approach is generally referred to as self-tuning or self-
management. There are implementations of this feature in commercial DBMS products for nearly
20 years [5][15]. In this regard, autotuning is a proven technology for data management. Our key
challenge is find an effective implementation strategy.

Early Experiences in Autotuning for Scientific Data Management

To minimize the entry barrier, we want the new scientific data management system to have a
familiar user interface. Since the bulk of the scientific data is in one of the popular high-level data
formats, a natural choice is to use the interface of one of these data format libraries. Among the data
formats, HDF5 and netCDF are the two with the largest amount of data in use. In particular, the
majority of the climate modeling community uses netCDF due to an international agreement
through IPCC. However, the recent version of netCDF has switched to use HDF5 as the basis.
Therefore, HDF5 is in a unique position with the largest user community. There are a number of
other data formats in use, but none of them has more users than HDF5. For example, FITS is used by
the astronomy community, and ADIOS BP is used by a number of large applications running on
some of the fastest HPC systems.

There are a number of other recent developments that make HDF5 a suitable choice for the
proposed scientific data management system. HDF5 is developing autotuning features under the
ExaHDF5 project and HDF5 has implemented a Virtual Object Layer that will make it possible for us
to replace the decisions on the physical organization of user data. The on-going autotuning work in
HDF5 can address the automatic selection of parameters to maximize the write performance on a
given hardware system. However, because the final product is still a file, it is not able to adapt to the
varying data access patterns.

To adapt to varying access patterns, we need a persistent service that can observe user access
patterns, analyze the variations in them, and then decide what could be done to accommodate the
new access patterns. We are in the process of designing the plug-in to HDF5 that will provide such
functionality.

In summary, we believe autotuning to be the essential feature for an efficient scientific data
management system. A new system is necessary because the existing scientific data is stored in files
that cannot evolve dynamically when the usage patterns change. The autotuning approach has been
extensively used in a number of different systems, and is therefore a proven strategy. We have
chosen to implement this strategy through HDF5 Virtual Object Layer. This implementation
strategy allows us to make use of a widely used data access interface and provide a smooth
transition pass for a wide community of scientific applications.
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